Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. In a series of publications, we describe a comprehensive comparison of Event Horizon Telescope (EHT) data with theoretical models of the observed Sagittarius A* (Sgr A*) and Messier 87* (M87*) horizon-scale sources. Aims. In this article, we report on improvements made to our observational data reduction pipeline and present the generation of observables derived from the EHT models. We make use of ray-traced general relativistic magnetohydrodynamic simulations that are based on different black hole spacetime metrics and accretion physics parameters. These broad classes of models provide a good representation of the primary targets observed by the EHT. Methods. We describe how we combined multiple frequency bands and polarization channels of the observational data to improve our fringe-finding sensitivity and stabilization of atmospheric phase fluctuations. To generate realistic synthetic data from our models, we took the signal path as well as the calibration process, and thereby the aforementioned improvements, into account. We could thus produce synthetic visibilities akin to calibrated EHT data and identify salient features for the discrimination of model parameters. Results. We have produced a library consisting of an unparalleled 962 000 synthetic Sgr A*and M87*datasets. In terms of baseline coverage and noise properties, the library encompasses 2017 EHT measurements as well as future observations with an extended telescope array. Conclusions. We differentiate between robust visibility data products related to model features and data products that are strongly affected by data corruption effects. Parameter inference is mostly limited by intrinsic model variability, which highlights the importance of long-term monitoring observations with the EHT. In later papers in this series, we will show how a Bayesian neural network trained on our synthetic data is capable of dealing with the model variability and extracting physical parameters from EHT observations. With our calibration improvements, our newly reduced EHT datasets have a considerably better quality compared to previously analyzed data.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Context.3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz. Aims.Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84. Methods.We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure. Results.We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency ofνm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field ofBSSA = (2.9 ± 1.6) G, and an equipartition magnetic field ofBeq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84. Conclusions.The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84.more » « less
An official website of the United States government
